Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 65(2): 313-319, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071535

RESUMO

Baseline [18F]FDG PET/CT radiomic features can improve the survival prediction in patients with diffuse large B-cell lymphoma (DLBCL). The purpose of this study was to investigate whether characterizing tumor locations relative to the spleen location in baseline [18F]FDG PET/CT images predicts survival in patients with DLBCL and improves the predictive value of total metabolic tumor volume (TMTV) and age-adjusted international prognostic index (IPI). Methods: This retrospective study included 301 DLBCL patients from the REMARC (NCT01122472) cohort. Physicians delineated the tumor regions, whereas the spleen was automatically segmented using an open-access artificial intelligence algorithm. We systematically measured the distance between the centroid of the spleen and all other lesions, defining the SD of these distances as the lesion spread (SpreadSpleen). We calculated the maximum distance between the spleen and another lesion (Dspleen) for each patient and normalized it with the body surface area, resulting in standardized Dspleen (sDspleen). The predictive value of each PET/CT feature for progression-free survival (PFS) and overall survival (OS) was evaluated through univariate and multivariate time-dependent Cox models and Kaplan-Meier analysis. Results: In total, 282 patients (mean age, 68.33 ± 5.41 y; 164 men) were evaluated. The artificial intelligence algorithm successfully segmented the spleen in 96% of the patients. SpreadSpleen, Dspleen, and sDspleen were correlated neither with TMTV (Pearson ρ < 0.23) nor with IPI (Pearson ρ < 0.15). When median values were used as the cutoff, SpreadSpleen, Dspleen, and sDspleen all significantly classified patients into 2 risk groups for PFS and OS (P < 0.001). They complemented TMTV and IPI to classify the patients into 3 risk groups for PFS and OS (P < 0.001). Integrating SpreadSpleen, Dspleen, or sDspleen into a Cox model on the basis of TMTV, IPI, and TMTV combined with IPI significantly improved the concordance index for PFS and OS (P < 0.05). Conclusion: Baseline PET/CT features that characterize tumor spread and dissemination relative to the spleen strongly predicted survival in patients with DLBCL. Integrating these features with TMTV and IPI further improved survival prediction.


Assuntos
Linfoma Difuso de Grandes Células B , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Prognóstico , Baço/diagnóstico por imagem , Baço/metabolismo , Fluordesoxiglucose F18 , Estudos Retrospectivos , Inteligência Artificial , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/metabolismo , Carga Tumoral
2.
J Nucl Med ; 63(12): 1925-1932, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35710733

RESUMO

Total metabolic tumor volume (TMTV) and tumor dissemination (Dmax) calculated from baseline 18F-FDG PET/CT images are prognostic biomarkers in diffuse large B-cell lymphoma (DLBCL) patients. Yet, their automated calculation remains challenging. The purpose of this study was to investigate whether TMTV and Dmax features could be replaced by surrogate features automatically calculated using an artificial intelligence (AI) algorithm from only 2 maximum-intensity projections (MIPs) of the whole-body 18F-FDG PET images. Methods: Two cohorts of DLBCL patients from the REMARC (NCT01122472) and LNH073B (NCT00498043) trials were retrospectively analyzed. Experts delineated lymphoma lesions from the baseline whole-body 18F-FDG PET/CT images, from which TMTV and Dmax were measured. Coronal and sagittal MIP images and associated 2-dimensional reference lesion masks were calculated. An AI algorithm was trained on the REMARC MIP data to segment lymphoma regions. The AI algorithm was then used to estimate surrogate TMTV (sTMTV) and surrogate Dmax (sDmax) on both datasets. The ability of the original and surrogate TMTV and Dmax to stratify patients was compared. Results: Three hundred eighty-two patients (mean age ± SD, 62.1 y ± 13.4 y; 207 men) were evaluated. sTMTV was highly correlated with TMTV for REMARC and LNH073B datasets (Spearman r = 0.878 and 0.752, respectively), and so were sDmax and Dmax (r = 0.709 and 0.714, respectively). The hazard ratios for progression free survival of volume and MIP-based features derived using AI were similar, for example, TMTV: 11.24 (95% CI: 2.10-46.20), sTMTV: 11.81 (95% CI: 3.29-31.77), and Dmax: 9.0 (95% CI: 2.53-23.63), sDmax: 12.49 (95% CI: 3.42-34.50). Conclusion: Surrogate TMTV and Dmax calculated from only 2 PET MIP images are prognostic biomarkers in DLBCL patients and can be automatically estimated using an AI algorithm.


Assuntos
Fluordesoxiglucose F18 , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Inteligência Artificial , Biomarcadores , Ensaios Clínicos como Assunto , Linfoma Difuso de Grandes Células B/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Estudos Retrospectivos , Carga Tumoral , Feminino , Pessoa de Meia-Idade , Idoso
3.
Med Image Anal ; 79: 102428, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500498

RESUMO

A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge's main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.


Assuntos
Aprendizado Profundo , Infarto do Miocárdio , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...